

8th Workshop on Electronics for LHC Experiments 9-13 Sept. 2002, Colmar, France

> <u>K. Kloukinas</u>, G. Magazzu, A. Marchioro CERN EP division, 1211 Geneva 23, Switzerland

Motive of Work

Description of the macro-cell design

Experimental Results

Conclusions

Motive of Work

- Several Front-End ASICs for the LHC detectors are using the CERN DSM Design Kit in 0.25 µm commercial CMOS technology.
- Many ASICs require the use of rather large memories in Readout Pipelines, Readout Buffers and FIFOs.
- CERN DSM Design Kit lacks design automation tools for generating customized SRAM blocks.

Proposed Design

- Built an SRAM macro-cell that can be configured in terms of word counts and bit organization by means of simple floorplanning procedures.
- Initially designed for the needs of the "Kchip" Front-End ASIC used in the CMS ECAL Preshower detector.

CERN-SRAM specifications

Scalable Design

- Configurable Bit organization (n x 9-bit).
- Configurable Memory Size (128 4Kwords).

Synchronous Dual-Port Operation

- Permits Read/Write operations on the same clock cycle.
- Typical Operating Frequency: 40 MHz.

Low Power Design

- Full Static Operation.
- Divided Wordline Decoding.
- Radiation Tolerant Design

Memory Cell

Dual Port SRAM Cell

Single Port SRAM Cell

- To minimize the macro-cell area a Single Port memory cell is used based on a conventional cross-coupled inverter scheme.
- Gain in Memory Cell Layout Area = 18%

Sept 12, 2002

SRAM Block Diagram

Dual-port functionality is realized with a time sharing access mechanism.

Registered InputsLatched Outputs

Address Mux Register

- Leaf cell is based on the D-F/F and the 2-input Mux standard cells found in the CERN DSM Design Kit.
- True & Complementary output with balanced timing.
 - Easily sizeable by abutting the necessary number of leaf cells.

Leaf Cell

Sept 12, 2002

Column Decoder

Static NAND-type implementation

- Column decoding is one of the last actions to be performed in the read sequence.
- It can be executed in parallel with other functions, and can be performed as soon as address is available.
- Its propagation delay does not add to the overall memory access time.

Size Configurable

- Make use of Design kit standard cells.
- Decoding function is via-hole programmable.

its short length.

Sept 12, 2002

CMS

Data Input Output Ports

- Data Input Register
 - Leaf cell is based on the D-F/F standard cell from CERN DSM Design Kit.
 - True & Complementary output with balanced timing.
 - Data Output Latch
 - Leaf cell is based on the Latch standard cell from CERN DSM Design Kit.
- Easily sizeable by abutting the necessary number of leaf cells.

Read Logic

- Substitution of the conventional sense amplifier with an asymmetric inverter.
 - Reduced Power Consumption
 - Stable operation al low power supply voltages.
 - Acceptable performance for target applications.
 - Easy to design.

Replica Techniques

Scalability

- Wordline select time depends on the size of the memory.
- Dummy Wordline with replica memory cells to track the wordline charge-discharge time.

Bitline Timing

 Dummy Bitlines to mimic the delay of the bitline path over all conditions.

Sept 12, 2002

Sept 12, 2002

Timing Logic

- Asynchronous internal timing of control signals.
- Static operation.
- Hand-shaking and transition detection to realize internal timing loops.
- Timing loops are initiated by the system clock and terminated upon completion of the operation.
- All control signals are forced back to their initial state to prepare for subsequent tasks.
- During standby periods, bitlines and wordlines precharge-evaluate cycles are not initiated, thus keeping the Power Consumption to a minimum.

Sept 12, 2002

Sept 12, 2002

KLOUKINAS Kostas EP/CME-PS

26

CAD Tools Support

Digital Simulation

Sept 12, 2002

Experimental Results

To prove the concept of the SRAM macro-cell scalability and to evaluate the performance of the proposed design we have fabricated two test chips:

- a 1Kwords X 9bits and
- a 4Kwords X 9bits.

Both chips were tested and found functional.

Submitted SRAM Chips

1st Prototype Design: CERN_SRAM_1K Configuration: 1K x 9 bit Size: ~560μm x 1,300μm Area: ~0.73mm2 Density: ~12.6Kbit/mm²

The Memory consists of 2 Blocks of 512 x 9bits. Each Block is composed by 4 Columns of 128 X 9bits.

Sept 12, 2002

Submitted SRAM Chips

2nd Prototype Design: CERN_SRAM_4K Configuration: 4K x 9 bit Size: ~1,850μm x 1,300μm Area: ~2.4mm2 Density: ~15.4Kbit/mm²

The Memory consists of 8 Blocks of 512 x 9bits. Each Block is composed by 4 Columns of 128 X 9bits.

CERN SRAM test results

Test chip: 4Kx9bit

Functional tests

- Max operating frequency:
 - Simultaneous Read/Write operations: 70MHz @ 2.5V
- Read access time: 7.5ns @ 2.5V
- Power dissipation:
 - 15µW / MHz @ 2.5V for simultaneous Read/Write operations on the same clock cycle (0.60mW @ 40MHz).
- Tests for process variations:
 - Differences in the access time < 1ns for: -3σ , -1.5σ , typ, $+1.5\sigma$, $+3\sigma$

Sept 12, 2002

Performance Tests

- Test Chip: 4Kword X 9bits
- Operation Frequency: 50MHz
- Power Supply: 2.5Volts
- Read Access Time: 7.5nsec

Performance Tests

- Test Chip: 4Kword X 9bits
 Power Supply: 2.0 2.7Volts
 Operation Frequency: 50MHz
 Test Patterns:

 All 1's and all 0's
 Checkerboard
 - Marching 1's
 - Marching 0's

Power dissipation

Power dissipation of macro-cell.

Test chip: 4Kwords x 9bits

	Power
Operation	(µW/MHz)
Standby	0.10
Idle	1.90
Read	7.40
Write	10.60
Read/Write	14.05

)		
Test Conditions		
Operation	Description	
Standby	No operation, addr. & data static.	
dle	No operation, addr. & data changing in every clk cycle	
Read	checkerboard data pattern	
Write	checkerboard data pattern	
Read/Write	checkerboard data pattern	

Sept 12, 2002

KLOUKINAS Kostas EP/CME-PS

36

Irradiation Tests

Ionizing Total Dose

- Conditions
 - Source: X-rays.
 - Step Irradiation: 1Mrad, 5Mrad, 10Mrad.
 - Constant dose rate: 21.2 Krad/min.
 - Annealing: 24h @ ~25 °C.
 - Under bias, in Standby mode during irradiation & annealing.

Results

- No increase in power dissipation.
- No measurable degradation in performance.

Single Event Upset:

Under preparation

Test chip: 4Kwords x 9bit

CERN SRAM popularity !

 \checkmark

ATLAS MCC chip

- Memory configuration: 128 x 27bit
- Detector: ATLAS PIXEL
- Lab: INFN Genova

ALICE AMBRA chip

- Memory configuration: 16K X 9 bits
- Detector: ALICE Silicon Drift Det.
- Lab: INFN Torino

ALICE CARLOS chip

- Memory configuration: 256 X 9 bits
- Detector: ALICE Silicon Drift Det.
- Lab: INFN Bologna
- LHCb SYNC chip
 - Memory configuration: 256 X 9 bits
 - Detector: LHCb muon system
 - Lab: INFN Cagliary

• ATLAS SCAC chip

- Memory configuration: 128 x 18bit
- Detector: ATLAS tracker
- Lab: NEVIS Labs

V

 \checkmark

ATLAS DTMROC chip

- Memory configuration: 128 x 153 bits
- Detector: ATLAS TRT
- Lab: CERN
- CMS Kchip
 - Memory configuration: 2K x 18 bits 128 x 18 bits
 - Detector: CMS Preshower
 - Lab: CERN

Chips submitted and tested

Conclusions

Design Status

- Design meets target specifications.
- Macrocell has been successfully used in a number of ASIC designs.

Future Plans

No further development is foreseen.

Design Support

- Contact Person: Kostas.Kloukinas@CERN.ch
- Information on the Web
 - http://home.cern.ch/kkloukin

Sept 12, 2002

